SYNTHESIS OF 1,6-HETEROSUBSTITUTED PRODUCTS VIA RADICALS

Bernd Giese*, Hans Horler and Wolfgang Zwick

Institut fur Organische Chemie und Biochemie Technische Hochschule Darmstadt Petersenstraße 22, D-6100 Darmstadt, Germany

Summary: Ketones and electron deficient alkenes are combined with each other via a methylene group to yield 1,6-heterosubstituted products in a radical chain reaction.

Syntheses of 1,6-heterosubstituted alkanes via carbon-carbon bond formation are reactions with "Umpolung" $^{1)}$. We have developed a new method, in which ketones $\underline{1}$ and electron deficient alkenes $\underline{2}$ are combined with each other by a methylene group to yield 1,6-substituted products.

The synthetic route contains the steps a) $silylation^2$ of $\underline{1}$, b) cyclopropanation³⁾ of $\underline{4}$, c) mercuration⁴⁾ of $\underline{5}$ and d) reduction of $\underline{6}$ in the presence of $\underline{2}$.

The new carbon-carbon bond is formed in a radical chain reaction 5). Radicals $\underline{7}$ are generated by reduction of organomercuric salts $\underline{6}$ with NaBH $_4$. Additions of $\underline{7}$ to alkenes $\underline{2}$ yield adduct radicals $\underline{8}$ which are trapped by H-donors to give products $\underline{3}$. Organomercuric hydrides are believed to be the H-donors in reductions of organomercuric salts with NaBH $_4$ 6).

The scope of this method has been tested by the reaction of cyclopropane $\underline{9}$ which is formed from cyclohexanone by standard procedures^{2,3)}.

Equimolar amounts of $\underline{9}$ and $\mathrm{Hg}\left(\mathrm{OAc}\right)_2$ react at $20^{\mathrm{O}}\mathrm{C}$ for 1 h in $\mathrm{CH}_3\mathrm{CO}_2\mathrm{H}$. The acid is destilled off and alkene $\underline{10}$, dissolved in $\mathrm{CH}_2\mathrm{Cl}_2$, is added in threefold excess. Reduction with a concentrated solution of NaBH_4 in water yields products $\underline{11}$ (Table I).

Table I Yields and spectra of products 11 in the mercuration/demercuration reaction of cyclopropane 10 in the presence of alkenes 10.

Alkenes 10			Products 11	1H-NMR (6)	IR (cm ⁻¹)	
х	Y	Z	(Yield, %)	CO ₂ CH ₂ R	υc=o	^U C≅N
н	Н	CN	68		1710	2245
Н	Н	COCH ₃	64		1705	
Н	Н	со ₂ сн ₃	62	3.65	1710,1735	
Н	CH ₃	со ₂ сн ₃	60	3.65	1715,1740	
CO ₂ C ₂ H ₅	Н	^{со} 2 ^с 2 ^н 5	58	4.11	1715,1740	
Н	Cl	CN	50		1710	2245
Н	CH ₃	CN	50		1705	2245
	_					

In reactions of alkenes $\underline{10}$ with nitrile, ester or ketone substituents, the products $\underline{11}$ are formed in 50-70 % yields. Similar yields are observed in reactions of unsubstituted alkyl radicals⁵⁾. Therefore, carbonyl substituted radicals $\underline{7}$ behave like nucleophiles⁷⁾.

<u>Acknowledgement</u>. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- D. Seebach, <u>Angew. Chem.</u> <u>91</u>, 259 (1979); <u>Angew. Chem. Int. Ed. Engl.</u> <u>18</u>, 239 (1979).
- 2) H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead, <u>J. Org. Chem.</u> <u>34</u>, 2324 (1969).
- 3) G. M. Rubottom and M. J. Lopez, <u>J. Org. Chem. 38</u>, 2097 (1973);
 R. Le Goaller and J. L. Pierre, <u>Bull. Soc. Chim. Fr. 1973</u>, 1531;
 S. Murai, Y. Kuroki, K. Hasegawa, and S. Tsutsumi, <u>J. Org. Chem. 38</u>,4354, (1973).
- 4) I. Ryu, K. Matsumoto, M. Ando, S. Murai, and N. Sonoda, <u>Tetrahedron</u>
 <u>Lett.</u> 1980, 4283.
- 5) B. Giese and J. Meister, Chem. Ber. 110, 2588 (1977).
- D. J. Pasto and J. A. Gontarz, <u>J. Am. Chem. Soc. <u>91</u>, 719 (1969);
 J. M. Whitesides and J. S. Filipo, <u>J. Am. Chem. Soc. <u>92</u>, 6611 (1970);
 R. P. Quirk and R. E. Lea, <u>Tetrahedron Lett. 1974</u>, 1925.
 </u></u>
- 7) B. Giese, G. Kretzschmar, and J. Meixner, Chem. Ber. 113, 278 (1980).

(Received in Germany 15 December 1981)